Numerical solution of functional integral equations by using B-splines
Authors
Abstract:
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.
similar resources
numerical solution of functional integral equations by using b-splines
this paper describes an approximating solution, based on lagrange interpolation and spline functions, to treat functional integral equations of fredholm type and volterra type. this method can be extended to functional dierential and integro-dierential equations. for showing eciency of the method we give some numerical examples.
full textGalerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines
In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.
full textNUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES
This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.
full textNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
full textAn efficient method for the numerical solution of functional integral equations
We propose an efficient mesh-less method for functional integral equations. Its convergence analysis has been provided. It is tested via a few numerical experiments which show the efficiency and applicability of the proposed method. Attractive numerical results have been obtained.
full textNumerical Solution of Optimal Control Problems Using B-Splines
This paper explores numerical solutions of optimal control problems using B–Spline curves. It is aimed to give a general framework on how to use B–Splines to formulate optimal control problems and to solve them numerically using Nonlinear Trajectory Generation software package. Effects of the selection of the B–Spline parameters, such as, number of intervals, smoothness, piecewise polynomial or...
full textMy Resources
Journal title
volume 01 issue 01
pages 45- 53
publication date 2012-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023